Where Does “Bottom-up” Bottom Out?

(Image credit: “Microglia and Neurons” by GerryShaw licensed under CC BY 3.0)

‘Bottom-up’ and ‘top-down’ are staple concepts in cognitive science. These terms refer to more than one set of concepts, depending on the context. In this post, I want to talk about one version of ‘bottom-up’ and try to pin down what is at the “bottom” of cognition.

First, I should single out the meaning of ‘bottom-up’ that I have in mind. It is the one in which ‘bottom’ refers to the deterministic hardware and pre-conscious processes from which “higher level” processes like meaning, affect, and perhaps conscious awareness emerge. Continue reading Where Does “Bottom-up” Bottom Out?

Goals & Desires

Randy O’Reilly gave a talk at CU Boulder yesterday entitled “Goal-driven Cognition in the Brain:….” It was an excellent look at how goals have emerged in cognitive science and psychology and how goal-based models have improved upon previous behaviorist models. He also told a story about how goal-driven cognitive models can be grounded in neurobiology.1 There are two reasons I mention this talk. First, Randy’s talk convinced me that “goals” have a valuable place in the ontology of mental states. Second, his talk helped me realize an example that shows how goals and desires are dissociable. In this post, I will talk about this second item. Continue reading Goals & Desires

Unconscious Perception in Infants?


Kouider et al have recently reported that infants’ cortical activity (when viewing faces) is isomorphic to that of adults who consciously perceive faces. They conclude that conscious perception develops between 5 and 15 months of age. After reading their paper, I want to consider a different conclusion. Perhaps Kouider et al didn’t find a marker of conscious perception. Maybe they found a marker of unconscious perception.

Continue reading Unconscious Perception in Infants?

The Hard Problem of Consciousness: A Cognition Problem?

A couple month’s ago, I was at a conference where Anthony Jack proposed a very interesting theory: maybe we have two neural systems (Task Positive Network [TPN] and Default Mode Network [DMN]) that produce conflicting intuitions about some age-old philosophical puzzles. These conflicting intuitions lead us to get stuck when thinking about these puzzles (e.g. the hard problem of consciousness, the explanatory gap, or qualitative consciousness) are the result of conflicting intuitions (Jack et al 2013).

I was struck by Jack’s presentation for two reasons: (1) I was presenting a poster with a similar motivation at the same conference and (2) I have long been interested in a biological examination of (academic) philosophers.

Continue reading The Hard Problem of Consciousness: A Cognition Problem?

Philosophers’ Brains

This link is a poster about philosophers’ brains that I presented at the Towards a Science of Consciousness Conference in Tuscon—I gave a talk based on this poster at University of Utah. Use the link to see a full-size PDF that will allow you to zoom ad nauseum without the blurriness—vector graphics are so cool!

Summary

We should not be surprised if some of the differences between philosophers views correlate with differences between philosophers’ brains. I list a handful of neurobiological differences that already correlate with philosophical differences among non-philosophers. It’s not obvious what we should glean from the possibility that philosophers’ brains could differ as a function of their views. After all, it might be that studying certain views changes our brain. That would not be surprising or concerning, really. But if it were the other way around — e.g., that structural/functional differences in brains predisposed us towards some views and away from other views — then that might be concerning. What if academic philosophy is just an exercise of post hoc rationalization of the views that philosophers’ brains are predisposed toward? Of course, it’s entirely possible that causation works in both directions. But even that could be concerning because that is compatible with self-reinforcing feedback loops. For instance, perhaps we are neurally predisposed to certain views, so we study those views which further predisposes us toward that view (and away from its alternatives). But these questions are getting ahead of the evidence. Hopefully, the neuroscience of philosophy will provide some answers. Until then, check out the poster to see what questions the research has already answered.

Related Posts

Higher-order Thought v. Higher-order Cortex


During a morning session of the SPP, Benjamin Kozuch made the following argument involving higher order thought:

    1. If Higher order theories of consciousness are true, then prefrontal lesions should produce manifest deficits in consciousness (as defined by HOT).
    2. PF lesions do not produce manifest deficits in consciousness.
    3. Therefore, many HO theories are not true.

Liad Murdik, in her comments, adeptly pointed out that the PFC is commonly taken to be a center (location, module, etc.) of HO states by a number of people, but this might be a mistake. She explains: it does not follow from the notion that the PFC is associated with higher order mental capacity (i.e. what makes humans more cognitively advanced than, say, mammals without a PFC) that the PFC is the location of HO thought or states. HO thoughts and states could very well be the product of dynamic relationships between various cortices.

Continue reading Higher-order Thought v. Higher-order Cortex